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The name vertex model is used to denote a lattice model in which the microstates
are represented by putting an arrow on each line connecting a pair of nearest-
neighbour sites. Such models can be constructed on any lattice, but those for the
plain square lattice have received the greatest attention. The most general model
of this type is the sixteen-vertex model, where the different vertex types correspond
to all possible directions of the arrows on the four edges meeting at a vertex. This
model, which can be shown [1] to be equivalent to an Ising model with two, three
and four-site interactions and with an external field, is unsolved. The eight-vertex
model corresponds to the case where the vertex types are restricted to those with
an even number of arrows pointing in and out. The vertices in this case, with their
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Abstract

The zero-field eight-vertex model is equivalent to a square lattice Ising
model, with a four-spin coupling and second neighbour coupling but no nearest
neighbour coupling. When the four-spin coupling is zero the model reduces to
two decoupled nearest neighbour Ising models. The standard formula for the
free energy of the Ising model is, therefore, implicit in Baxter’s expression for
the free energy of the zero-field eight-vertex model. The detailed derivation
of this result has not appeared in print. As a footnote to Baxter’s work this
paper provides the necessary analysis.

Introduction

corresponding energies, are:

The six-vertex model, where the vertices 7 and 8 are eliminated by setting e; =
eg = 00, is the situation when the same number of arrows point in and out. This re-
striction is called the ice rule. The ground-state entropy of this model was obtained
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by Lieb [2], who also derived the free energy [3, 4, 5]. The conditions
er=ey, e3=es  e5=¢€5  er=¢g (1)

correspond to to the situation when the vertex energies are unaltered when all the
arrows are reversed. By analogy with a ferroelectric model this is referred to as the
zero-field case. Now the model has four independent Boltzmann factors

exp(—ey/kgT) =exp(—ez/ksT) = q,

exp(—es/kpgT) =exp(—es/ksT) =D, @)
exp(—es/kpgT) =exp(—es/ksT) =c,

exp(—er/kgT) = exp(—es/ksT) =

In section 2 the spin formulation of the zero-field eight-vertex model is described
and in section 3 Baxter’s derivation of the free energy is summarized. The reduction
of that formula to that of the free energy of the Ising model is presented in section
4. Since this work is dependent on the properties of elliptic functions the relevant
formulae are given in an appendix together with the derivation of some crucial nome
series.

2 The equivalent spin model

Given a particular arrow configuration of the eight-vertex model, configuration
graphs are drawn consisting of lines on all bonds with arrows pointing to the left
or downwards. The restriction of vertex types to those of the eight-vertex model
means that an even number of lines are incident at each vertex; the configuration
graphs are polygons. If an Ising (s = 1) spin is placed at the centre of each face then
the spin sites form another plane square lattice, which is the dual of the original
lattice. If the spins contained within each polygon graph are aligned in the same
direction, which is different from that of the neighbouring regions, then to every
vertex configuration there are two spin configurations. One of the two equivalent
relationships between vertices, bonds and spins is

With a four-spin coupling — K 4, a bottom-left top-right coupling —K —K', a bottom-
right top-left coupling — K+ K’ and a trivial coupling — K¢ we have the identification

a=exp (Ko + 2K + K4), b=-exp (Ko —2K + K4), (3)
c =exp (Ko +2K' — K,), d=exp (Ko —2K' — K4)

between vertex and spin Boltzmann factors [6]. Because of the two spin configura-
tions corresponding to each vertex configuration the spin partition function is twice
the partition function of the zero-field eight-vertex model.

When K > K’ and K4 > 0 the spin model is ferromagnetic and a > b, ¢, d. Using
the weak-graph transformation [7], it can be shown that, when these conditions
apply, the zero-field eight-vertex model has a transition surface

a=b+c+d. (4)
In terms of the spin couplings this takes the form

O(K,K',K4) =1, (5)



where

O(K,K',K4) = tanh(2K4)cosh®(2K)
+ sinh?(2K) + sinh?(2K')[tanh(2K,) — 1]. (6)

When K’ = K4 =0 (5) and (6) give the well-known formula sinh(2K.) = 1 for the
critical coupling of the simple Ising model. When K’ = 0 the system is isotropic; the
critical curve in the K—K4 plane cuts the K axis at K.. When K — 0, K4 — o0,
showing that there is no phase transition in a spin—% model with a purely four-spin
interaction. The critical exponents « and 3, given by

™ ™

7 — arccos{tanh(2K,)}’ P= 16[m — arccos{tanh(2K4)}]’ @

x=2-—

[8] vary as functions of the four-spin coupling. This result is consistent with scaling
theory only if K4 is a marginal coupling. That this is indeed the case follows from
the work of Kadanoff and Wegner [6] who established that K4 scales as 1/r? = 1/r<.
(The scaling dimension of K4 is the physical dimension, so the scaling exponent is
7€er0.)

3 The free energy of the eight-vertex model

An exact expression for the free energy of the zero-field eight-vertex model was
derived by Baxter [8, 9, 10] from the largest eigenvalue of the appropriate transfer
matrix. The first step of Baxter’s analysis was to obtain conditions under which
transfer matrices with different values of a, b, ¢ and d commute. This procedure is
most easily represented in terms of a set of new variables wy, wsy, w3 and wy which
satisfy the conditions

Wi > Wy > Wy > |wy| (8)

The case a > b, c,d has the spin representation described above and the critical
temperature T, with K = J/kgT, K' = J'/ksT, K4 = Jy/ksT, is given as the
solution of (4) or (5). Now the variables wy, Wy, ws and wy are defined by

Ha=b), T<T,

wi = i(a+b), Wy =
tc+d), T>T, )
tc+d), T<T,
W3 = W4:%(C_d)
fa=b), T>T,

and the critical temperature is given by ws = ws. Baxter [8, 9, 10] expressed the
transfer matrix in terms of Pauli matrices and showed that two transfer matrices,
corresponding to two different sets of w; values, commute when the ratios (w? —
w?)/(w? —w?), where (j, k,1,m) is any permutation of (1,2,3,4), are the same for
both sets of w;. In fact it is not difficult to see that only two ratios of this form can
be chosen independently. Let

w%—wzzl—kA wf—w§:1+l" (10)
wi-wi 1-A’ wi-w? 1-T

From (8) and (10)

A>1, -1<TI<1. (11)

Transfer matrices with the same values of A and I' commute. For fixed values of A
and I' there remains one degree of freedom in the ratios of the values of wy, ..., wy.



Using the Jacobian elliptic functions cn(+|-), sn(:|-) and dn(-|-) (see Gradshteyn and
Ryzhik [11] and the appendix below), let

_cen(U}d) dn(U}f) - sn(U]f)
" (@) a@e) s
with ¢, U and £ real numbers and 0 < ¢ < 1. It can now be shown using the

formulae (A5) that all the ratios (Wi —wg)/(wj —w},) are functions of ¢ and /,
but not of U and that

W1 I Wo I W3 I Wy (12)

1 en(2¢)¢)
_ - _ 13
dn(2¢}¢)’ r dn(2|¢)’ (13)
with the inverse relations
A+T A2 —1
2 = — 2 14
w0 = 37 = (14)

So when ( and ¢ are fixed, transfer matrices with different values of U commute.
In terms of these variables the dimensionless free energy ¢ per lattice site, is given
8, 9, 10] by

o0

A
(15)
where
x =exp{—nC¢/K()}, q=exp{-2rK({)/K(")}, z=exp{—mU/K()}.
(16)
The variable ¢ is the nome of ¢’ defined by (A9).
4 The free energy of the Ising model
From (3), (6), (9) and (10)
[ OK,K'Ky) T<T,,
A = { 1/0(K, K', ki) T>T, (17)
_ tanh(2K4) T < T,
r= { tanh(2K4)/O(K, K", K1) T > Te. (18)

The transition surface corresponds to A = 1. We now consider the case where
K' = K4 =0, when, from (3), (9), (12), (13) and (18),

Wy = 0, u = 0,

r=o ¢ o= 5%(0). (19)

From (6), (14) and (17)

, [ sinh*(2K), T <T.,

£= { sinh ?(2K), T > T, (20)

and from (16) and (19)
z=1, x = q% = exp{—nXK()/2K(¢")}. (21)

Using the transformation
21 , 1=t

= = 22
kl 1 + g,: kl 1 —f-é” ( )



it follows, from (A15) and (A16), that
K(kr) = 1+ )KL,  K(ky) =
From (21)
& = exp{—nK(k}) /K (k1)}
is the nome of k. From (3), (9), (15), (21) and (24)

(1 + €)X (0).

1
2

—2K =Y hn(), T <T., (K> K.),
n=1
o(K) = )
—Infcosh(2K) + 1] = Y hn(z), T > T, (K < K.),
n=1
where
2n _ .2n 2 _m)2
hn(m)—m (1—a*")"(1—2")
n(l — z8)(1 4 z2n)
Since
v_9
J 0K’

B(K) ixdhn(w)

-2 T<T
+ xQ(kl) —~ dz ’ < e,
v _ "
4 _2sinh(2K) N B(K) imdhn(x) T
1+cosh(2K) =~ X*(ky) =" dz ~’ “
where
72 cosh® (2K)
B(K) = —— T
sinh(2K)[sinh”(2K) — 1]
From (26)
dhn(z) " N 222" 83"
T Az 14z 1+ w2n)2 (1+ an)3

_l.n(]_ + 1.2n) B 41.411 4m3n(1 + 1’2”)
1+ g4n (1 + 1.4n)2 (]_ + m2n)3
and hence, from equations (A12)-(A14), (A17)-(A19),

20 dha(z) KPR (o 21253 (ky)
2:135 dz n? 21+ k) -1 73 '

n=

Since, from (20) and (22),

ki = 2sinh(2K)sech?(2K),
— Q] 2

K= ﬂ:{l 51112h (2K)}, T<T.,
cosh”(2K)

(25)



by substituting from (32) and (33) into (31) and then into (28) we obtain, after
substitution from (A4) for the integral form of K(k1),

w = —J coth(2K) [1 + %{2 tanh?(2K) — 1} / 7 (34)

dy
\/1— kZsin® ¢ ’

which is the formula for the internal energy of the Ising model on the plane square
lattice at all temperatures [5]. Using (32) it is now straightforward to show that

#(K) = In[cosh(2K)] + % /O%ﬂ In {% (1 +4/1 — k? sin? ¢> } dep (35)

satisfies (27) and (34). The expression (35) is one of the many equivalent forms [5]
for the free energy of the plane square lattice Ising model.

Appendix

An advanced treatment of elliptic functions is given by Baxter [8] and a compre-
hensive list of formulae is given by Gradshteyn and Ryzhik [11]. Complete elliptic
integrals of the first and second kind are denoted by K(m) and €(m) respectively.
They satisfy the formulae

x(0) = &(0) = 3, &) =1, (A1)
E(m)K(m') + &(m")H(m) — K(m)K(m') = in, (A2)
dX(m)  &(m) — m'*K(m) dX(m')  m?XK(m') — &(m/)
dm mm!'? ’ dm mm'? (43)
and we shall also need the integral form
xm)y= [ ¢ (A4)

o V1-m?sin?e
The Jacobian elliptic functions sn(u|m), cn(u|m) and dn(|jm) are related by
cn(ulm) = /1 — sn2(u|m), dn(ulm) = /1 — m2sn?(u|m). (A5)

The elliptic functions are doubly-periodic ([11], p.909). For real u, sn(u|m) and
cn(u|m) have period 4X(m) and dn(u|m) has period 2K (m). For present purposes
it is the elliptic function dn(u|m) which is of particular importance. We shall need
the following results

2K (m)
/ duwdn® (ulm) = 2€(m), (A6)
0

2K (m) 2K (m)
/ du/ dv dn(u|m)dn(i — vjm)dn(v|m) = 2m'*%*(m) + Lx?,
(A7)
2K (m)
/0 dudn(ujm)dn(u+ 32K (m')|m) = V1 + m{x + 2(1 — m)X(m)}.
(A8)

Formula (A6) is straightforward to prove using (A5), the substitution = sn(u|m)
and the definition of an elliptic integral of the second kind. The results (A7) and



(A8) are more difficult to prove and need the use of the formulae for dn(u +v|m),
([11], p.916). The nome z of m is defined by

z = exp{—nK(m')/K(m)}. (A9)
From (A2) and (A3),
dz z? (A10)

dm ~ 2% (m)mm'®

In terms of z,

™ 2T = " nmTu
= — All
dnufm) = 3505 * %) nz::l 1522 O { 5C(m) } ’ (ALL)
([11], p.911). Substituting u = 0 into (A11) and using dn(0|m) = 1 gives
= " K(m) 1
= - - A12
nz::l 1+ z2n 2m 4 (A12)

By substituting from (A1l) into (A6) and noting that the cosines in (All) are
orthogonal over the range of this integral, it follows that

i 2" _&m)KX(m) 1 (A13)

(14 227)? 2m? 8

n=1

In a similar way, by substituting from (A11) into (A7),

00 3n 12,3 1

Z x - m UC3(m) N X(m) 1 (A14)

ot (1 + 23n) 47 167 16
We now use a modified version

1—m' 2vm/

my= S my = 1—m%:1+m, (A15)

of the Landen transformation, for which
!
K(mi) = 31 +m)K(m),  E(my) = Elm) + m'X(m) (A16)

1+m!

([11], p.908). It follows from (A9) that x? is the nome of m;. Replacing m by m;
in (A11), setting u = $:1X(m}) and using dn($:K(m})|m1) = I+ my, gives

i e"(L+2*) Km)vIT+mi 1
—~ 14 xin N m 2’
1+m'X(m) 1
- ./ _ - Al
2 T 2 (AL7)
and replacing m by m; in (A13) gives

i zin _ &m)XK(mi) 1
—(14ain)® 2 8’

1 , 1

= K(m){E(m) + m'K(m)} g (A18)

Final, by replacing m by m4 in (A8), substituting from (A11) and performing the
integration, it can be shown that

ZM - %wml)mww(l—ml)%(ml)}—i

~ 1+ m4n)2 4
1 1+ m , 1
= K(m) 5 {m+2m'X(m)} 1 (A19)
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